手机浏览器扫描二维码访问
绝对无穷Ω:
理想的绝对无穷可以看作宇宙V的基数,在新基础集合论nf中对绝对无穷,施加幂集反而会让他从绝对无穷中跌落,不要与序数中的第一不可序列数搞混
格罗滕迪克宇宙:
让我们把格罗滕迪克宇宙的定义说清楚吧。
ZFc宇宙v的子类u是格罗登迪克宇宙:
1.如果x∈u,y∈x,则y∈u(关于∈的推移性)
2.如果x,y∈u,则{x,y}∈u(关于配对的结构是闭合的)
3.如果x∈u,则po(x)∈u(关于幂集合是闭的)
4.I∈u,f:I→u,则∪(f)∈u(关于族的合并是封闭的)
5.u∈V(V的元素)
6.∈u(具有无穷集)∪(f)是?i∈If(i)的缩写。
是整个自然数的集合。如果去掉第五个条件u∈V,v本身就是格罗滕迪克宇宙。
但是,格罗滕迪克宇宙“不过大”
是个迷,所以小〈sma11ness〉的条件有u∈V。
1o〈ZhenLin1o〉把去掉最后∈u的东西称为预宇宙〈pre-universe〉。空类(空集合)成为预宇宙(虽然是虚的例子)。也可以制作只包含有限集合的预宇宙。也可是,更多出现与代数几何,范畴有关的领域里。
不过也仅仅是等价于强不可达性大基数的存在(即一个无限基数k会使得Vk?ZFnet(ZFc)
复宇宙:
假没m是一个由ZFc模型组成的非空类:我们说m是一个复宇宙,当且仅当它满足:
1可数化公理
2伪良基公理
3可实现公理
⑷力迫扩张公理
⑸嵌入回溯公理
对于任意集合论宇宙V若为集合论的一个模型,同时在V中作为诠释或者说是可定义的,那么可同样作为一个集合论宇宙。对于任意集合论宇宙V那么任意位于V内的力迫p,存在一个力迫扩张V[g]其中g?p为V-generico对于每一个集合论宇宙存在一个更高的宇宙且存在一个序数o满足V?o?对于每一个集合论宇宙V,从另一个更好的集合论宇宙的角度来说是可列的。从另一个更好的集合论宇宙的角度来看,每一个集合论宇宙V都是i11-founded的简单说,存在一个集合论宇宙V,并且对任意集合论宇宙m,存在一个集合论宇宙以及中的一个ZFc模型,使的在看来,m是一个由可数的非良基ZFc模型,那V便是复宇宙。在复宇宙中,没有哪个集合论宇宙是特别的,任何集合论宇宙都存在着更好的宇宙能看到前者的局限性。
脱殊复宇宙:
令m为ZFc的可数传递模型,则由m生成的脱殊复宇宙V?为满是以下条件的最小模型类:
1m∈V?
2如果n∈V?,而n’=n[g]是n的脱殊扩张,则n’∈V?
作品简介...
简介关于福女当道果子铺南家大姑娘南书燕居然是瓷商归家大房早年丢失的女儿?不行,飞上枝头变凤凰这样的好事怎么也不能便宜了她。南老夫人欲想来个偷梁换柱,只是,此南书燕早已不是彼南书燕。既然老天让她重活一世,她便要讨回前世的债,偿还今世的情归家二老爷让她交出归家的掌家之权。南书燕我誓,此生绝不外嫁,必将归家技艺扬光大。霍炎此女够狠,甚合我意!...
世界上总有一种主角,觉得与他分手的前任就是拜金,就是看不起嫌弃他,然后打脸各种前任,让前任后悔。苗小千就穿越成了这个前任。面对的各种渣男,苗小千把目光瞄准了地位最高的那位。一句话,离开了你我过得更好...
科技与异能的碰撞究竟是神话仙术魔法,还是机械创造智慧更能成为这个时代的宗旨。灵气的苏醒,地壳的变动…新时代的人们来到了一个特殊的地方,似乎是很久便忘了的现实寺庙,也是早就隐居的道教,他们这些没有做出任何选择的人,离开了黑暗。所以那个时代短短生活几天的痕迹,却造成了一个世界的动荡,在物种与时空不相同的状况下,曙光守护者1来自未来的旅客...
假太监?呵!皇宫里只有一个男人,其他的都是太监。我就是那个男人。假太监,你有女人吗?我有皇后。公主,贵妃,女将等经常找我。你不怕砍头吗?我有霸王神功。石毅也很无奈,这些都是从冷宫皇后交易开始的各位书友要是觉得石毅夏侯思毓小说最新章节免费阅读还不错的话请不要忘记向您QQ群和微博里的朋友推荐哦!...
重回离婚前,费林林看着眼前鲜活的6延,又是哭又是笑。那个冷漠矜贵的男人皱眉看着她你还想要什么?他们对立坐着,桌面上摆的是离婚协议。费林林做了一个大胆的决定,她站起来,走到6延面前,拉着他的领带迫使他抬起头,跟他深如墨色的眼睛对视。这样深邃如古井的眼睛,藏得住一切情绪,怪不得她前世从来没有察觉6延的爱意。费林林低头吻下去,想要你,行吗?6延行,太行了,恨不得双手奉上。美惨强女主x暗恋成真霸总1v1双处重生文霸总内心戏多...